SUBJECT INDEX

Absorption	erties and its arrangements with other
Studies on biotransformation of elastase.	enzyme activities (Simon, Thomas) (288) 434
II. Intestinal ——— of ¹³¹ I-labeled elastase	Bilayers
in vivo (Katayama, Fujita) (288) 181	Phase transitions of phospholipid ———
Acetylcholine receptors	and membranes of Acholeplasma laidlawii
Isolation of ——— by chloroform-methanol	B visualized by freeze fracturing electron
extraction: Artifacts arising in use of	microscopy (Verkleij et al.) (288) 326
Sephadex LH-20 columns (Levinson, Key-	Bile salts
nes) (288) 241	Studies on the effects of unconjugated
Acholeplasma laidlawii	dihydroxy —— on rat small intestine
	function in vivo (Sladen, Harries) (288) 443
Phase transitions of phospholipid bilayers	
and membranes of ——— B visualized by	Bitter taste reception
freeze fracturing electron microscopy	Mechanism of ——: Interaction of bitter
(Verkleij et al.) (288) 326	compounds with monolayers of lipids from
Acholeplasma laidlawii	bovine circumvallate papillae (Koyama,
Selective solubilization with Tween 20 of	Kurihara) (288) 22
membrane proteins from ——— (Hjertén,	Black lipid membranes
Johansson) (288) 312	Energy transfer in ——— (Pohl) (288) 248
Albumin	Carrier
Haemolysis of washed human erythrocytes	Rejection criteria for the asymmetric
by the combined action of Naja naja	— and their application to glucose
phospholipase A ₂ and ——— (Gul, Smith)	transport in the human erythrocyte (Han-
(288) 237	kin et al.) (288) 114
Amino acid influx	Cation transport
Neutral ——— across the brush order of	Effect of general anaesthetics on active
rabbit ileum: Stereospecificity and the	in human erythrocytes (Hale et al.)
roles of the α -amino and α -carboxylate	(288) 107
groups (Schultz et al.) (288) 367	Cell membrane
α-Aminoisobutyrate influx	Microviscosity of the ——— (Rudy,
Degree and the efficiency of coupling be-	Gitler) (288) 231
	Cell volume
tween Na ⁺ influx and ——— in Ehrlich cells	
(Geck et al.) (288) 486	Effect of low pH and high CO ₂ tension on
α-Aminoisobutyric transport	the —— of rabbit renal cotex slices
in Saccharomyces cerevisiae: Feed-	(Nielsen) (288) 457
back control (Kotyk, Ríhová) (288) 380	Cell volume regulation
Anaesthetics	Sodium-potassium pump and —— in
Effect of general — on active cation	frog bladder (Janáček et al.) (288) 221
transport in human erythrocytes	Chloride conductance
(Hale et al.) (288) 107	Regulation of sodium transport by alter-
Anion	ation of — (Watlington) (288) 482
——— effects on glycine entry into pigeon	Chloroform-methanol extraction
erythrocytes (Imler, Vidaver) (288) 153	Isolation of acetylcholine receptors by
ATPase	: Artifacts arising in use of Sephadex
Bicarbonate-stimulated — from mam-	LH-20 columns (Levinson, Keynes) (288)
malian pancreas. Properties and its arran-	241
gement with other enzyme activities	Chlorophyll-lipid membranes
(Simon, Thomas) (288) 434	Structure and reflection spectra of ———
ATPase	(Cherry et al.) (288) 12
Ligand-induced conformational changes in	Corneal endothelium
the magnesium, calcium-dependent ——	Potential difference and fluid transport
of erythrocyte membranes (Bond) (288) 423	across rabbit ——— (Fischbarg) (288) 362
ATPase	Sodium ion influx
Reactivation of a phospholipid-depleted	Degree and the efficiency of coupling be-
sodium, potassium-stimulated —	tween — and α -aminoisobutyrate in
(Palatini et al.) (288) 413	Ehrlich cells (Geck et al.) (288) 486
Bicarbonate-stimulated ATPase	Dinitrophenol extrusion
from mammalian pancreas. Prop-	Comparison of the effect of acidic inhibitors

upon anaerobic phosphate uptake and	transport inhibitors of different kinetic
by metabolizing yeast cells (Borst-	type: The inhibition of intestinal transport
Pauwels, Huygen) (288) 166	of —— by phloretin and phlorizin (Co-
Elastase Studies on histransformation of	lombo, Semenza) (288) 145
Studies on biotransformation of ———. I. Transport of ¹³¹ I-labeled elastase across	Glucose transport On the temperature dependence of initial
rat intestine in vitro (Katayama, Fujita)	velocities of — in the human erythro-
(288) 172	cyte (Hankin, Stein) (288) 127
Elastase	Glucose transport
Studies on biotransformation of ———. II.	Rejection criteria for the asymmetric carrier
Intestinal absorption of ¹³¹ I-labeled elastase	and their application to ——— in the
in vivo (Katayama, Fujita) (288) 181	human erythrocyte (Hankin et al.) (288) 114
Energy transfer	Glycine entry
in black lipid membranes (Pohl)	Anion effects on —— into pigeon
(288) 248	erythrocytes (Imler, Vidaver) (288) 153
Erythrocytes	Glycoproteins
Anion effects on glycine entry into pigeon	Proteins and ——— of the milk fat globule
(Imler, Vidaver) (288) 153	membrane (Kobylka, Carraway) (288) 282
Erythrocytes	Haemolysis
Effect of general anaesthetics on active	——— of washed human erythrocytes by
cation transport in human — (Hale	the combined action of Naja naja phos-
et al.) (288) 107	pholipase A ₂ and albumin (288) 237
Erythrocytes	Insulin
Haemolysis of washed human ——— by	
the combined action of Naja naja phos-	from rat adipocytes: Their physiological and physicochemical properties (Avruch
pholipase A ₂ and albumin (Gul, Smith)	et al.) (288) 27
(288) 237 Erythrocyte	Ion pump
On the temperature dependence of initial	Evidence for an electrogenic ——— in
velocities of glucose transport in the human	Nitella translucens. I. The effect of pH,
—— (Hankin, Stein) (288) 127	K ⁺ , Na ⁺ , light and temperature on the
Erythrocyte	membrane potential and resistance (Spans-
Rejection criteria for the asymmetric car-	wick) (288) 73
rier and their application to glucose trans-	Lipid
port in the human ——— (Hankin et al.)	Age-related changes in membrane
(288) 114	content and enzyme activities (Grinna,
Erythrocytes	Barber) (288) 347
Water diffusion permeability of ——	Lipids
using an NMR technique (Conlon, Outhred)	Mechanism of bitter taste reception: Inter-
(288) 354	action of bitter compounds with monolayers
Erythrocyte ghosts	of ——— from bovine circumvallate papil-
Interaction of the (Na ⁺ , K ⁺)-ATPase of	lae (Koyama, Kurihara) (288) 22
— with ouabain (Lishko et al.) (288) 103	Lipid-chlorophyll
Erythrocyte membranes	Structure and reflection spectra of ———————————————————————————————————
Ligand-induced conformational changes in the magnesium, calcium-dependent ATP-	Lipid composition
ase of ——— (Bond) (288) 423	of Azotobacter vinelandii in which
Excitable membranes	the internal membrane network is induced
Na+-K+-dependent conformation change	or repressed (Marcus, Kaneshiro) (288) 296
of proteins of ——— (Papakostidis et al.)	Lipid membranes
(288) 277	Energy transfer in black——— (Pohl)
Frog skin	(288) 248
Effect of silver ion on permeability proper-	Lysosomes
ties of ——— (Curran) (288) 90	Effect of increasing concentrations of salt
Fructose	on the ——— of rat liver and Tetrahymena
Support for the existence of an active	pyriformis (Allen, Lee) (288) 304
transport mechanism of ——— in the rat	Lysylphosphatidylglycerol
(Macrae, Neudoerffer) (288) 137	Trypsin-catalyzed hydrolysis of mono-
β-Galactosidase Isolation and characterization of mutants	molecular films of ——— (Gould, Dawson)
of Escherichia coli K-12 which leak ———	(288) I Magnesium, calcium-dependent ATPase
(Olden, Wilson) (288) 54	Ligand-induced conformational changes in
Glucalogues	the ——— of erythrocyte membranes
Example of mutual competition between	(Bond) (288) 423

Membrane matrix disruption by (Williams, Bell) (288) 255 Membrane Dipid composition of Azotobacter vine landii in which the internal — network is induced or repressed (Marcus, Kaneshiro) (288) 269 Membranes Na*-K*-dependent conformation change of proteins of excitable — (Papakostidis et al.) (288) 277 Membranes Nucleotide phosphohydrolase activities of the plasma — of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane — (Mack et al.) (288) 233 Membrane — (Mack et al.) (288) 233 Membrane — (Mack et al.) (288) 233 Membrane — (Moshylka, Carraway) (288) 282 Membrane plid — (Kobylka, Carraway) (288) 285 Membrane mutants — disruption by melittin (Williams, Bell) (288) 255 Membrane proteins of the milk fat globule — matrix — disruption by melittin (Williams, Bell) (288) 255 Membrane proteins — of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 255 Membrane proteins — by centrific gation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins — by centrific gation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins — by centrific gation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins — by centrific gation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins — by centrific gation and gel electrophoresis. A comparison of the cell membrane (Proteins and glycoproteins of the milk fat globule membrane (Proteins and glycoproteins of the milk fat globule membrane (Proteins and glycoproteins of the milk fat globule membrane (Proteins and glycoproteins of the milk fat globule membrane (Proteins and glycoproteins of the milk fat globule membrane (Proteins and glycoproteins of the milk fat globule membrane (Proteins and glycoproteins of the milk fat globule membrane (Proteins and glycoproteins of the milk fat globul		
(Williams, Bell) (288) 255 Membranes Lipid composition of Azotobacter vine landii in which the internal —— network is induced or repressed (Marcus, Kaneshiro) (288) 206 Membranes Na*-K*-dependent conformation change of proteins of excitable —— (Papakostidis et al.) (288) 275 Membranes Nuclectide phosphohydrolase activities of the plasma —— of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 282 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 347 Membrane mutant Agroach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 282 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis, A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis, A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis, A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis, A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of —— of Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjerten, Johansson) (288) 362 Membrane proteins Characterisation of —— of Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjerten, Johansson) (288) 363 Membrane proteins Characterisation of —— of Staphylococcus aureus based on —— (Kobylka, Carraway) (288) 265 Membrane proteins Characterisation of —— of Staphylococcus aureus based on —— (Kobylka, Carraway) (288) 265 Membrane proteins Characte	Melittin	Monomolecular films
(Williams, Bell) (288) 255 Membranes Na'-K'-dependent conformation change of proteins of excitable —— (Papakostidis et al.) (288) 276 Membranes Nucleotide phosphohydrolase activities of the plasma —— of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Nucleotide phosphohydrolase activities of the plasma —— of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 282 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 347 Membrane matrix Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane mutants Bell (288) 255 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K*, Na*, light and temperature on the—— and resistence (Spanswick) (288) 75 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis, A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis, A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeiktius—— (Fukui, Salton) (288) 76 Membrane proteins Characterisation of intestinal transport of glucalogues by—— and phlorizin between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by—and phlorizin between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by—and phlorizin between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by—and phlorizin between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by—and phlorizin by metabolizing yeast cells (Borst-Pauwels, Huygen) (288) 166 Phospholipase A ₂ Mittochondria Mik fat globule membra	Membrane matrix disruption by ———	Trypsin-catalyzed hydrolysis of ———
Membrane Lipid composition of Azotobacter vine-landii in which the internal — network is induced or repressed (Marcus, Kaneshiro) (288) 296 Membranes Na*-K*-dependent conformation change of proteins of excitable — (Papakostidis et al.) (288) 277 Membranes Nucleotide phosphohydrolase activities of the plasma — of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Occurrence of vitamin A in biological — (Mack et al.) (288) 203 Membrane Proteins and glycoproteins of the milk faglobule — (Kobylka, Carraway) (288) 282 Membrane lipid Age-related changes in — content and enzyme activities (Grinna, Barber) (288) 285 Membrane matrix — disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of — of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane proteins Characterisation of — by centrifugation and gel electrophoresis A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptities in Micrococcus lysodeikticus — (Fukui, Salton) (288) 37 Membrane proteins Common perities in Micrococcus lysodeikticus — (Fukui, Salton) (288) 37 Membrane proteins Common perities in Micrococcus lysodeikticus — (Fukui, Salton) (288) 363 Membrane (Frence of a nelectrogenic ion pump in Nitella translucens. I. The effects of pH, McPrococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane proteins Characterisation of — by centrifugation and gel electrophoresis A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptities in Micrococcus lysodeikticus — (Fukui, Salton) (288) 37 Membrane proteins Characterisation of — by centrifugation and gel electrophoresis A comparison of the effect of acidic inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by phloretin and — (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and m	(Williams, Bell) (288) 255	of lysylphosphatidylglycerol (Gould, Daw-
Lipid composition of Azotobacter vine-landiti in which the internal — network is induced or repressed (Marcus, Kaneshiro) (288) 296 Membranes Na*+K*-dependent conformation change of proteins of excitable — (Papakostidis et al.) (288) 277 Membranes Nucleotide phosphohydrolase activities of the plasma — of embryonic chick liver cells (Sanford, Rosenberg) (289) 333 Membrane Occurrence of vitamin A in biological — (Mack et al.) (288) 239 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 245 Membrane lipid Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity, (Kent, Lennarz) (288) 225 Membrane proteins Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K*, Na*, light and temperature on the —— and resistence (Spanswick) (288) 739 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation with Tween 20 of —— (From Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity Mik fat globule membrane (Rudy, Gitler) (288) 232 Mik fat globule in membrane (Rudy, Gitler) (288) 232 Mik fat globule membrane (Rudy, Gitler) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to diterative distributions of bitter taste reception: Interaction of the effect of acidic inhibitors of liferent membrane proteins of the milk fat globule membrane (Rudy, Gitler) (188) 283 Mikochondria Mik fat globule membrane (Rudy, Gitler) (188) 283 Mikochondria Mik fat globule membrane (Rudy, Gitler) (188) 283 Micochondria Mikochondria Mikochondria Mikochondria Mikochondria Mikochondria Mikochondria Mikochond		
A showdomycin-resistant mutant of Escherichia coli K-12 with altered — characterism induced or repressed (Marcus, Kaneshiro) (288) 296 Membranes Na*-K*-dependent conformation change of proteins of excitable — (Papakostidis et al.) (288) 277 Membranes Nucleotide phosphohydrolase activities of the plasma — of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Occurrence of vitamin A in biological —— (Mack et al.) (288) 203 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 282 Membrane proteins Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 236 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 269 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 269 Membrane proteins Selective solubilization with Twen 2001 —— of more Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Milk fat globule membrane (Rudy, Gitter) (288) 233 Mikhard (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 232 Micholame of the cell membrane (Rudy, Gitter) (288) 233 Membrane proteins Selective solubilization with Twen 2001 —— (Morthal and temperature on the comparison of the cell membrane of Morthal and temperature on the comparison of the cell membrane of Morthal and temperature on the comparison of the cell membrane of Morthal and temperature on the comparison of the cell membrane of Morthal and temperature on the comparison of the cell comparison o		
work is induced or repressed (Marcus, Kaneshiro) (288) 269 Membranes Na'-K'-dependent conformation change of proteins of excitable ————————————————————————————————————		
Kaneshiro) (288) 296 Membranes Na*-K*-dependent conformation change of proteins of excitable ————————————————————————————————————		
Membranes Na'-K'-dependent conformation change of proteins of excitable —— (Papakostidis et al.) (288) 277 Membranes Nucleotide phosphohydrolase activities of the plasma —— of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Occurrence of vitamin A in biological —— (Mack et al.) (288) 293 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 282 Membrane lipid Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennary) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K', Na', light and temperature on the—— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of the effect of acidic inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by p— and dinitrophenol extrusion by metabolizing yeast cells (Borst-Pauwels, Huygen) (288) 166 Membrane proteins Grand relative —— exposed to Attentive device proteins and glucoproteins of the effect of acidic inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by p— and dinitrophenol extrusion by metabolizing yeast cells (
Nat—K*-dependent conformation change of proteins of excitable ————————————————————————————————————	Kaneshiro) (288) 296	ter (Komatsu, Tanaka) (288) 390
proteins of excitable —— (Papakostidis et al.) (288) 277 Membranes Nucleotide phosphohydrolase activities of the plasma —— of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Occurrence of vitamin A in biological —— (Mack et al.) (288) 203 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 282 Membrane lipid Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+*, Na*, light and temperature on the —— and resistence (Spanswick) (288), 328 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 312 Mik fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 327 Membrane disruption by melittin (Williams, Bell) (288) 43 Persantin Effects of —— on several transport systems of murine leukemias (Kessel, Dodd) (288) 65 Personality of the —— of Escherichia coli (Haest et al.) (288) 43 Persantin Effects of —— on several transport systems of murine leukemias (Kessel, Dodd) (288) 129 Phloretin Example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by —— and phlorizin (Colombo, Semenza) (288) 145 Phospholipid Reactivation of a —— depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 43 Prospholipid Reactivation of a —— depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 43 Prospholipid Silvayers Phospholipid bilvayers Phospholipid bilvayers Phospholipid bilvayers Phospholi	Membranes	Nucleotide phosphohydrolase
proteins of excitable —— (Papakostidis et al.) (288) 277 Membranes Nucleotide phosphohydrolase activities of the plasma —— of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Occurrence of vitamin A in biological —— (Mack et al.) (288) 203 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 282 Membrane lipid Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+*, Na*, light and temperature on the —— and resistence (Spanswick) (288), 328 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Characterisation of in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 312 Mik fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 327 Membrane disruption by melittin (Williams, Bell) (288) 43 Persantin Effects of —— on several transport systems of murine leukemias (Kessel, Dodd) (288) 65 Personality of the —— of Escherichia coli (Haest et al.) (288) 43 Persantin Effects of —— on several transport systems of murine leukemias (Kessel, Dodd) (288) 129 Phloretin Example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by —— and phlorizin (Colombo, Semenza) (288) 145 Phospholipid Reactivation of a —— depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 43 Prospholipid Reactivation of a —— depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 43 Prospholipid Silvayers Phospholipid bilvayers Phospholipid bilvayers Phospholipid bilvayers Phospholi	Na ⁺ -K ⁺ -dependent conformation change of	——— activities of the plasma membranes
membranes Nucleoticle phosphohydrolase activities of the plasma —— of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Occurrence of vitamin A in biological —— (Mack et al.) (288) 203 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 282 Membrane lipid Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Common peptidis in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 73 Membrane mutants Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Mik fat globule membrane (Rudy, Gitler) (288) 231 Mik fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to d¹¹-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of staphylococcus aureus based on —— (Kobylka, Carraway) (288) 282 Membrane proteins Common — in Micrococcus lysodeikticus membrane proteins (Fukui, Salton) (288) 65 Permachility barrier Fragility of the (Na*+, *1-APase (Taniguchi, Idiai) (288) 98 Perstantin Effects of — on several transport systems of murine leukemias (Kessel, Photerin —— example of m		
Membranes Nucleotide phosphohydrolase activities of the plasma —— of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Occurrence of vitamin A in biological —— (Mack et al.) (288) 203 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 282 Membrane lipid Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane protenial Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Clare (Fukui, Salton) (288) 312 Mik fat globule membrane (Rudy, Gitler) (288) 231 Mik fat globule membrane (Proteins and glycoproteins of the Micrococcus lysodeikticus —— of the Comparison of the effect of pH, Kert, Na+, Individual of the proteins of the membrane (Rudy, Gitler) (288) 231 Mik fat globule membrane (Rudy, Gitler) (288) 231 Mik fat globule membrane (Rudy, Gitler) (288) 232 Membrane proteins Biochemical effects and morphological changes in rat liver —— exposed to d¹-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of Archoleplasma laidlawii B visualized by freeze fracturing electron microsopy (Ver-vest fracturing electron m		
Nucleotide phosphohydrolase activities of the plasma —— of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Occurrence of vitamin A in biological —— (Mack et al.) (288) 203 Membrane Proteins and glycoproteins of the milk fat globule —— (Kobylka, Carraway) (288) 282 Membrane lipid Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Bell) (288) 255 Membrane mutants Bell) (288) 255 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na ⁺ , light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepaned by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common — in Micrococcus lysodeikticus —— of the selection of pH, K+, Na ⁺ , light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepaned by different methods (Maddy, Kelly) (288) 263 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjerten, Johansson) (288) 312 Microscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Mikf at globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Micochondria Biochemical effects and morphological changes in rat liver —— exposed to d ¹¹ tetrahydrocannabinol (Bino et al.) (288) 195 Mechanism of bitter taste reception: Interaction of bitter compounds with —— of Acholeplasma laidlawii B visualized by freeze fracturing electron microsopy (Ver- Phospholipid bilayers Phase transitions of —— of Escherichia coli (Haest et al.) (288) 43 Prospholipid of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by—— and dinitrophenol extr		
the plasma — of embryonic chick liver cells (Sanford, Rosenberg) (288) 333 Membrane Occurrence of vitamin A in biological — (Mack et al.) (288) 203 Membrane Proteins and glycoproteins of the milk fat globule — (Kobylka, Carraway) (288) 282 Membrane lipid Age-related changes in — content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix — disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of — of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na*, light and temperature on the — and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of — by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common — in Micrococcus lysodeik-ticus membrane proteins (Fragility of the — of Escherichia coli (Haest et al.) (289) 65 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (289) 65 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 65 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 65 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 69 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 69 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 65 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 65 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 65 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 65 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 65 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 65 Permeability barrier Fragility of the — of Escherichia coli (Haest et al.) (288) 65 Permeability sharrier Fragi		
Samford Rosenberg (288) 333 Al (288) 103 Courrence of vitamin A in biological ————————————————————————————————————		Interaction of the (Na ⁺ , K ⁺)-Al Pase of
Membrane Occurrence of vitamin A in biological ————————————————————————————————————		erythrocyte ghosts with ——— (Lishko et
Membrane Occurrence of vitamin A in biological ————————————————————————————————————	liver cells (Sanford, Rosenberg) (288) 333	al.) (288) 103
Occurrence of vitamin A in biological ————————————————————————————————————	Membrane	
Membrane Proteins and glycoproteins of the milk fat globule — (Kobylka, Carraway) (288) 282 Membrane lipid Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to 4 ¹ -tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter taste reception: Interaction of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-	Occurrence of vitamin A in biological	
Membrane lipid Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants —Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Persantin Effects of —— on several transport on murine leukemias (Kessel, Dodd) (288) 190 PH Sensitivity Approach to the selection of membrane mutants of Staphylococcus aureus based on —— (Kent, Lennarz) (288) 225 Phloretin Example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhi		
Proteins and glycoproteins of the milk fat globule — (Kobylka, Carraway) (288) 282 Membrane lipid Age-related changes in — content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix — disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of — of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the — and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of — by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus — (Fuku, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of — from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity — of the cell membrane (Rudy, Gitler) (288) 231 Microviscosity — of the cell membrane (Proteins and glycoproteins of the — (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver — exposed to 4¹-tetrahydrocannabinol (Bino et al.) (288) 195 Mendrane mutants Approach to the selection of selection of sale and interval and introphenol of glucalogues by phoretin and — (Colombo, Semenza (288) 145 Phospholipase A ₂ Haemolysis of washed human erythrocytes by the combined action of Naja naja — and albumin (Gul, Smith) (288) 237 Phospholipid bilayers Mechanism of bitter taste reception: Interaction of bitter taste reception: Interaction of bitter compounds with — of lipids from bovine circumvallate pa-		
membrane lipid Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Mik fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\alpha\)-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-		
Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K*, Na*, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to △¹¹-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-	Proteins and glycoproteins of the milk fat	Common — in Micrococcus lysodeik-
Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K⁺, Na⁺, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to △¹¹- tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumwallate particular par	globule —— (Kobylka, Carraway) (288) 282	ticus membrane proteins (Fukui, Salton)
Age-related changes in —— content and enzyme activities (Grinna, Barber) (288) 347 Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centriful gation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\triangle 1\)— tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-	Membrane lipid	
membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to ⊿¹-tetrahydrocannabinol (Bino et al.) (288) 199 Fragility of the —— of Escherichia coli (Haest et al.) (288) 199 Persantin Effects of —— on several transport systems of murine leukemias (Kessel, Dodd) (288) 199 Phlorzin Example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by phlorettin and —— (Colombo, Semenza) (288) 145 Phosphale uptake Comparison of, the effect of acidic inhibitors upon anaerobic —— and dinitrophenol extrusion by metabolizing yeast cells by the combined action of Naja naja —— and ablumin (Gul, Smith) (288) 237 Phospholipide Reactivation of a —— depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 43		
Membrane matrix —— disruption by melittin (Williams, Bell) (288) 255 Membrane mutants Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\delta\)-(Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\delta\)-(Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\delta\)-(Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\delta\)-(1 (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-		
Hembrane mutants Approach to the selection of ——————————————————————————————————		
Bell) (288) 255 Membrane mutants Approach to the selection of ——————————————————————————————————		
Approach to the selection of ——————————————————————————————————		
Approach to the selection of —— of Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Mik fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to d¹-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-	Bell) (288) 255	Effects of —— on several transport
Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Mik fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to Altetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of lipids from bovine circumvallate pa-	Membrane mutants	systems of murine leukemias (Kessel,
Staphylococcus aureus based on pH sensitivity (Kent, Lennarz) (288) 225 Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the —— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Mik fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to Altetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of lipids from bovine circumvallate pa-	Approach to the selection of ——— of	Dodd) (288) 190
Membrane potential Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the ——— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus ——— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of ———————————————————————————————————		
Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the ———————————————————————————————————	**************************************	
Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the — and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of — by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus — (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of — from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity — of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the — (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver — exposed to \$\Delta^1\$-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of lipids from bovine circumvallate pa- Mitochondria proteins of the — exposed to \$\Delta^1\$-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with — of lipids from bovine circumvallate pa-		
Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the ———————————————————————————————————		
K+, Na+, light and temperature on the ———————————————————————————————————		
—— and resistence (Spanswick) (288) 73 Membrane proteins Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mittochondria Biochemical effects and morphological changes in rat liver —— exposed to Δ¹-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of limition of intestinal transport of glucalogues by 145 Example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibitors of example of mutual competition between transport inhibitors of different kinetic type: The inhibitors of different kinetic type	Nitella translucens. I. The effects of pH,	Phloretin
type: The inhibition of intestinal transport of glucalogues by —— and phlorizin (Colombo, Semenza) (288) 145 Phlorizin Example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by —— and phlorizin (Colombo, Semenza) (288) 145 Phlorizin Example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by phloretin and —— (Colombo, Semenza (288) 145 Phosphate uptake Comparison of, the effect of acidic inhibitors upon anaerobic —— and dinitrophenol extrusion by metabolizing yeast cells (Borst-Pauwels, Huygen) (288) 166 Phospholipase A₂ Haemolysis of washed human erythrocytes by the combined action of Naja naja —— and albumin (Gul, Smith) (288) 237 Phospholipid Reactivation of a —— depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 413 Phospholipid bilayers Phase transitions of intestinal transport of glucalogues by phloretin and —— (Colombo, Semenza) (288) 145 Pholorizin Example of mutual competition between transport inhibitors of different kinetic type: The inhibitions of intestinal transport of glucalogues by phloretin and —— (Colombo, Semenza (288) 145 Phosphate uptake Comparison of, the effect of acidic inhibitors upon anaerobic —— and dinitrophenol extrusion by metabolizing yeast cells (Borst-Pauwels, Huygen) (288) 166 Phospholipide Reactivation of a —— depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 413 Phospholipid bilayers Phase transitions of —— and membrane of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy (Ver-	K ⁺ , Na ⁺ , light and temperature on the	Example of mutual competition between
type: The inhibition of intestinal transport of glucalogues by —— and phlorizin (Colombo, Semenza) (288) 145 Phlorizin Example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by —— and phlorizin (Colombo, Semenza) (288) 145 Phlorizin Example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by phloretin and —— (Colombo, Semenza (288) 145 Phosphate uptake Comparison of, the effect of acidic inhibitors upon anaerobic —— and dinitrophenol extrusion by metabolizing yeast cells (Borst-Pauwels, Huygen) (288) 166 Phospholipase A₂ Haemolysis of washed human erythrocytes by the combined action of Naja naja —— and albumin (Gul, Smith) (288) 237 Phospholipid Reactivation of a —— depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 413 Phospholipid bilayers Phase transitions of intestinal transport of glucalogues by phloretin and —— (Colombo, Semenza) (288) 145 Pholorizin Example of mutual competition between transport inhibitors of different kinetic type: The inhibitions of intestinal transport of glucalogues by phloretin and —— (Colombo, Semenza (288) 145 Phosphate uptake Comparison of, the effect of acidic inhibitors upon anaerobic —— and dinitrophenol extrusion by metabolizing yeast cells (Borst-Pauwels, Huygen) (288) 166 Phospholipide Reactivation of a —— depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 413 Phospholipid bilayers Phase transitions of —— and membrane of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy (Ver-	——— and resistence (Spanswick) (288) 73	transport inhibitors of different kinetic
Characterisation of —— by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the ——— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\Delta^1\)-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-		
gation and gel electrophoresis. A comparison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus—— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of ———————————————————————————————————		
ison of proteins prepared by different methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus ————————————————————————————————————		
methods (Maddy, Kelly) (288) 263 Membrane proteins Common peptides in Micrococcus lysodeikticus —— (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\Delta \) tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of lipids from bovine circumvallate pa- Example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by phloretin and —— (Colombo, Semenza (288) 145 Phosphate uptake Comparison of, the effect of acidic inhibitors upon anaerobic —— and dinitrophenol extrusion by metabolizing yeast cells (Borst-Pauwels, Huygen) (288) 166 Phospholipase A ₂ Haemolysis of washed human erythrocytes by the combined action of Naja naja —— and albumin (Gul, Smith) (288) 237 Phospholipid Reactivation of a —— depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 413 Phospholipid bilayers Phase transitions of —— and membranes of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy (Ver-		
Membrane proteins Common peptides in Micrococcus lysodeikticus — (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of ———————————————————————————————————		
Common peptides in Micrococcus lysodeikticus — (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of ———————————————————————————————————		Example of mutual competition between
ticus — (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\Delta \) tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-	Membrane proteins	transport inhibitors of different kinetic
ticus — (Fukui, Salton) (288) 65 Membrane proteins Selective solubilization with Tween 20 of —— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\Delta \) tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-	Common peptides in Micrococcus lysodeik-	type: The inhibition of intestinal transport
Membrane proteins Selective solubilization with Tween 20 of ————————————————————————————————————		
Selective solubilization with Tween 20 of ———————————————————————————————————		
—— from Acholeplasma laidlawii (Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to ⊿¹-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa- Comparison of, the effect of acidic inhibitors upon anaerobic —— and dinitrophenol extrusion by metabolizing yeast cells (Borst-Pauwels, Huygen) (288) 166 Phospholipase A₂ Haemolysis of washed human erythrocytes by the combined action of Naja naja —— and albumin (Gul, Smith) (288) 237 Phospholipid Reactivation of a —— -depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 413 Phospholipid bilayers Phase transitions of —— and membranes of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy (Ver-		
(Hjertén, Johansson) (288) 312 Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\delta^1\)-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-		
Microviscosity —— of the cell membrane (Rudy, Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the —— (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to \(\Delta \)^1- tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-		
Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to △¹-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa- (Borst-Pauwels, Huygen) (288) 166 Phospholipiase A₂ Haemolysis of washed human erythrocytes by the combined action of Naja naja — and albumin (Gul, Smith) (288) 237 Phospholipid Reactivation of a —— -depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 413 Phospholipid bilayers Phase transitions of —— and membranes of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy (Ver-	(Hjertén, Johansson) (288) 312	upon anaerobic ——— and dinitrophenol
Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the (Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to △¹-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa- (Borst-Pauwels, Huygen) (288) 166 Phospholipiase A₂ Haemolysis of washed human erythrocytes by the combined action of Naja naja — and albumin (Gul, Smith) (288) 237 Phospholipid Reactivation of a —— -depleted sodium, potassium-stimulated ATPase (Palatini et al.) (288) 413 Phospholipid bilayers Phase transitions of —— and membranes of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy (Ver-	Microviscosity	extrusion by metabolizing yeast cells
Gitler) (288) 231 Milk fat globule membrane (Proteins and glycoproteins of the ———————————————————————————————————	— of the cell membrane (Rudy,	
Milk fat globule membrane (Proteins and glycoproteins of the ———————————————————————————————————	Gitler) (288) 231	
(Proteins and glycoproteins of the ———————————————————————————————————		
(Kobylka, Carraway) (288) 282 Mitochondria Biochemical effects and morphological changes in rat liver —— exposed to Δ¹-tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with —— of lipids from bovine circumvallate pa-		
Mitochondria Biochemical effects and morphological changes in rat liver — exposed to \(\mathcal{D}^1\) tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with — of lipids from bovine circumvallate pa-		
Biochemical effects and morphological changes in rat liver — exposed to Δ^1 -tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with — action of bitter compounds with — of lipids from bovine circumvallate pa-		
changes in rat liver —— exposed to Δ^1 - tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Inter- action of bitter compounds with —— of lipids from bovine circumvallate pa-		
tetrahydrocannabinol (Bino et al.) (288) 195 Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with of lipids from bovine circumvallate pa-		
Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with of lipids from bovine circumvallate pa-	changes in rat liver ——— exposed to Δ^{1}	potassium-stimulated ATPase (Palatini et
Monolayers Mechanism of bitter taste reception: Interaction of bitter compounds with of lipids from bovine circumvallate pa-	tetrahydrocannabinol (Bino et al.) (288) 195	al.) (288) 413
Mechanism of bitter taste reception: Inter- action of bitter compounds with ————————————————————————————————————		
action of bitter compounds with ——— of Acholeplasma laidlawii B visualized by of lipids from bovine circumvallate pa-	Mechanism of bitter taste reception: Inter-	
of lipids from bovine circumvallate pa-		
Pinac (120) ania, 12 aniata, (200) 22 Kiej et al., (200) 320		
	p.mac (110 yama, 11ammara) (200) 22	mong of all, (200) 520

SUBJECT INDEX 473

Plasma membranes	Two apparently different ouabain binding
Insulin-stimulated ——— from rat adipo-	sites of ——— (Taniguchi, Iida) (288) 98
cytes: Their physiological and physico-	Sodium-potassium pump
chemical properties (Avruch et al.) (288) 27	and cell volume regulation in frog
Plasma membranes	bladder (Janáček et al.) (288) 221
Nucleotide phosphohydrolase activities of	Sodium, potassium-stimulated ATPase
the —— of embryonic chick liver cells	Reactivation of a phospholipid-depleted
(Sanford, Rosenberg) (288) 333	——— (Palatini et al.) (288) 413
Potassium ions	Sodium transport
Evidence for an electrogenic ion pump in	Regulation of —— by alteration of
Nitella translucens. I. The effects of pH,	chloride conductance (Watlington) (288) 482
——, Na+, light and temperature on	Staphylococcus aureus
the membrane potential and resistance	Approach to the selection of membrane
(Spanswick) (288) 73	mutants of ——— based on pH sensitivity
Proteins	(Kent, Lennarz) (288) 225
——— and glycoproteins of the milk fat	Δ^{1} -Tetrahydrocannabinol
globule membrane (Kobylka, Carraway)	Biochemical effects and morphological
(288) 282	changes in rat liver mitochondria exposed
Proteins	to ——— (Bino et al.) (288) 195
Characterisation of membrane—— by	Transport
centrifugation and gel electrophoresis. A	Potential difference and fluid ——— across
comparison of proteins prepared by dif-	rabbit corneal endothelium (Fischbarg)
ferent methods (Maddy, Kelly) (288) 263	(288) 362
Proteins	Transport
Common peptides in Micrococcus lyso-	Studies on biotransformation of elastase.
deikticus membrane ——— (Fukui, Salton)	I. of ¹³¹ I-labeled elastase across
(288) 65	rat intestine in vitro (Katayama, Fujita)
Proteins Na+-K+-dependent conformation change	(288) 172 Transport
of — of excitable membranes (Papa-	Transport Support for the existence of an active
kostidis et al.) (288) 277	— mechanism of fructose in the rat
Proteins	(Macrae, Neudorffer) (288) 137
Selective solubilization with Tween 20 of	Transport inhibitors
membrane — from Acholeplasma	Example of mutual competition between
laidlawii (Hjertén, Johansson) (288) 312	of different kinetic type: The
Sarcoplasmic reticulum	inhibition of intestinal transport of glu-
Lipid composition of purified fragmented	calogues by phloretin and phlorizin
——— of the rabbit (Owens et al.) (288) 479	(Colombo, Semenza) (288) 145
Sephadex LH-20 columns	Transport systems
Isolation of acetylcholine receptors by	Effects of persantin on several — of
chloroform-methanol extraction: Artifacts	murine leukemias (Kessel, Dodd) (288) 190
arising in use of ——— (Levinson, Keynes)	Trypsin
(288) 241	
Showdomycin	molecular films of lysylphosphatidylglycerol
A ——— -resistant mutant of Escherichia	(Gould, Dawson) (288) 1
coli K-12 with altered nucleoside transport	Vitamin A
character (Komatsu, Tanaka) (288) 390 Silver ion	The occurrence of ——— in biological mem-
Effect of —— on permeability proper-	branes (Mack et al.) (288) 203 Vitamin E uptake
ties of frog skin (Curran) (288) 90	by rat small intestinal slices (Pear-
Sodium ions	son, Legge) (288) 404
Evidence for an electrogenic ion pump in	Water diffusion
Nitella translucens. I. The effects of pH,	—— permeability of erythrocytes using
K ⁺ , ——, light and temperature on the	an NMR technique (Conlon, Outhred) (288)
membrane potential and resistance (Spans-	354)
wick) (288) 73	Yeast cells
Sodium-potassium-activated ATPase	Comparison of the effect of acidic inhibitors
Interaction of the ——— of erythrocyte	upon anaerobic phosphate uptake and
ghosts with ouabain (Lishko et al.) (288) 103	dinitrophenol extrusion by metabolizing
Sodium-potassium-activated ATPase	(Borst-Pauwels, Huygen) (288) 166